

Can we distangle the relative effect of urbanization and artificial lighting on biodiversity?

Use of a national-scale acoustic monitoring database to test the effect of ALAN on bats.

C. Azam, I. Le Viol, J-F Julien & C. Kerbiriou

Contact: cazam@mnhn.fr

Has the Earth's sixth mass extinction already arrived?

Anthony D. Barnosky^{1,2,3}, Nicholas Matzke¹, Susumu Tomiya^{1,2,3}, Guinevere O. U. Wogan^{1,3}, Brian Swartz^{1,2}, Tiago B. Quental^{1,2}†, Charles Marshall^{1,2}, Jenny L. McGuire^{1,2,3}†, Emily L. Lindsey^{1,2}, Kaitlin C. Maguire^{1,2}, Ben Mersey^{1,4} & Elizabeth A. Ferrer^{1,2}

VS.

1) What is the relative effect of ALAN in regard to urbanization, and intensive agriculture on bats?

/S.

1) What is the relative effect of ALAN in regard to urbanization, and intensive agriculture on bats?

2) Multi-scale approach: Is there a scale of effect (local vs. landscape) to measure species response to ALAN?

To determine the **spatial extent** at which a given population can be affected by ALAN

> Model species: 4 common species of bats

©Laurent Arthur

Materials & Methods

Biological data

> Car transects surveys

1 circuit/night = $10 \times 2 \text{ km}$ transects

➤ Constant acoustic recordings during transects

Number of bat pass/species / transect

Standardized protocol

- ✓ Constant speed : 25 km/h
- ✓ Start30 minutes after sunset
- ✓ June/July
- ✓ T> 12° C, no wind, no rain
- From 2006 to 2013
 398 circuits = 3996 transects
- **→** 4 common species : 22 500 bat passes

P. Pipistrellus P. Kuhlii

E. serotinus

N. leislerii

Materials & Methods

Environmental data

- > % of intensive agriculture
- % of impervious surface
- Average luminance

(nano-Watts/(cm2*sr)

Materials & Methods

Environmental data

Table 1. Proportion of land cover type and luminance at the national scale and around the transects

Land cover	Continental France	Transects (200 m buffer)
% urban areas	5.2	14.4
% agriculture areas	28.1	32.5
% deciduous forests	19.9	18.6
Av luminance	3.2	2.2

Materials and Methods

Materials and Methods

Overlap between urbanization and artificial lighting

- Generalized Linear Mixed Models
 - ➤ **Response variable:** Presence/absence of the species
 - > Fixed effects: Av. luminance OR % impervious surface + % agriculture
 - + meteorological covariables + date
 - **Random effect:** Circuit number

Ran models with all the combinations of predictors (Luminance vs. Impervious)

Materials and Methods

Overlap between urbanization and artificial lighting

- Generalized Linear Mixed Models
 - ➤ **Response variable:** Presence/absence of the species
 - **▶** Fixed effects: Av. luminance OR % impervious surface + % agriculture
 - + meteorological covariables + date
 - > Random effect: Circuit number

Ran models with all the combinations of predictors (Luminance vs. Impervious)

Discussion

- ➤ ALAN have a significant negative effect on 3 species of bats at almost all spatial scales
- > The strength of each species response depended of the spatial scale considered

Discussion

- ➤ ALAN have a significant negative effect on 3 species of bats at almost all spatial scales
- The strength of each species response depended of the spatial scale considered
 - Evidence of landscape-scale effects of ALAN on bats

➤ Large scale negative effect on "light-attracted species"

Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis

Kelvin F. Conrada,*, Martin S. Warrenb, Richard Foxb, Mark S. Parsonsa, Ian P. Woiwoda

*Rothamsted Research, Plant and Invertebrate Ecology, West Common, Harpenden, Hertfordshire AL5 2JQ, UK ^bButterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset BH20 5QP, UK

Downs et al. 2003; Hale et al. 2015

Discussion

Contrasting trends in light pollution across Europe based on satellite observed night time lights

Jonathan Bennie, Thomas W. Davies, James P. Duffy, Richard Inger & Kevin J. Gaston

Opportunities exist to reduce light pollution!

- dimming lighting
- lighting spectrum
- part-night lighting
- dark sky reserve
- etc.

Any questions?

Acknowledgements:

All the participants of the Vigie Chiro survey

Yves Bas Nathalie De Lacoste Arthur Vernet

cazam@mnhn.fr