

TEMPO Mission

- > Tropospheric Emissions: Monitoring of Pollution (TEMPO)
 - NASA Earth Venture Instrument (EV-I)
 - Hosted on a geostationary commercial communications satellite over North America
 - Launch date TBD: 2018 2021
 - Primary Mission: Air Quality / Atmospheric Chemistry
 - Lead Institution: Smithsonian Astrophysical Observatory (PI: Kelly Chance, Deputy PI: Xiong Liu)
 - NASA Implementing Center: NASA Langley Research Center
 - Instrument Manufacturer: Ball Aerospace & Technologies Co.
- > Future International Constellation for Air Quality Observations
 - Geostationary Orbit:
 - Geostationary Environment Monitoring Spectrometer (GEMS) – Korea, 2019
 - Sentinel-4 Europe, 2022
 - Low-Earth Orbit: Sentinel-5p (TROPOMI, 2017) and -5 (2021)

TEMPO Operations: Step / Stare Imaging over Field of Regard

Parameter	Current Best Estimate
Frame Integration Time	118 ms
Image Frame Rate	7.92 Hz
Image Frame Time	2.65 s
Number of Coadds	21
Scan Mirror Step Size	114 μrad
Number of Scan Mirror Steps	1283
Coverage Time	59.1 min

Approved for Public Release

TEMPO Instrument: Expanded View

Approved for Public Release

Daytime Mission

- Cover Greater North America from a geostationary orbital station 80°W to 115°W
- ➤ Retrieve concentrations of trace gases, including O₃, NO₂, SO₂, H₂CO, C₂H₂O₂, BrO, IO, and H₂O from the spectra of reflected sunlight, plus other objectives (aerosols, clouds, chlorophyll fluorescence)
- Revisits < 1 hour during daylight to follow the creation and dispersal of pollutants
- Ground Footprint: 2.1km x 4.4km at Field of Regard center from GEO at 100°W
- ➤ Dwell per pixel: 2.478 s

P. Zoogman, et. al., "Tropospheric Emissions: Monitoring of Pollution (TEMPO)", Journal of Quantitative Spectroscopy and Radiative Transfer, in press.

NO₂ column densities over the TEMPO Field of Regard (derived from OMI)

Nighttime Observing

- > Sun safety constraint limits nighttime observing opportunities
- ➤ Best times for TEMPO nighttime observations are during winter

Spectroscopic Signatures

Nightlight Retrievals

> TEMPO nighttime observing Operations Concept

- Plan for clear skies over areas of interest & sun constraint
- Increase dwell time to ~10s per pixel
- Calibrate dark current with aperture shut 16x 10 dwells
- Open aperture and collect over designated area
- Recalibrate dark current with aperture shut ~160s
- Leave aperture shut while waiting to resume daylight operations
- Nightlights spectral fitting "retrieves" nightlight radiances from each lighting type in our library and accounts for moon
- Poisson noise in TEMPO dark current is limiting factor

Uncertainty in retrieved radiances are in units of an equivalent response in the VIIRS-DNB.

One "DNB" unit = 1 nW sr⁻¹ cm⁻².

What TEMPO Might See

December 2015 Clear-Sky Mean VIIRS-DNB Radiances (NOAA/NGDC)
Remapped to the TEMPO Field of Regard and Resolution

Conclusions

- ➤ Fine spectral resolution of the TEMPO spectrometer enables discrimination of different lighting types that is simply not possible using the VIIRS-DNB
- ➤ TEMPO nightlights retrievals will be sufficiently sensitive to characterize outdoor lighting types over North America
 - Enhanced pixel dwell times for low light
 - Sensitivity is limited by Poisson noise in dark current
 - Most sensitive to sources with highly structured spectra
 - Best observing is during winter at Beginning of Life
- ➤ We encourage our Korean and European colleagues to look at the capabilities of GEMS and Sentienel-4 to do similar exciting new science with their instruments

